docker service create

Estimated reading time: 22 minutes


Create a new service


docker service create [OPTIONS] IMAGE [COMMAND] [ARG...]


Name, shorthand Default Description
--constraint   Placement constraints
--container-label   Container labels
--dns   Set custom DNS servers
--dns-option   Set DNS options
--dns-search   Set custom DNS search domains
--endpoint-mode   Endpoint mode (vip or dnsrr)
--env, -e   Set environment variables
--env-file   Read in a file of environment variables
--group   Set one or more supplementary user groups for the container
--health-cmd   Command to run to check health
--health-interval   Time between running the check (ns|us|ms|s|m|h)
--health-retries 0 Consecutive failures needed to report unhealthy
--health-timeout   Maximum time to allow one check to run (ns|us|ms|s|m|h)
--host   Set one or more custom host-to-IP mappings (host:ip)
--hostname   Container hostname
--label, -l   Service labels
--limit-cpu 0.000 Limit CPUs
--limit-memory 0 B Limit Memory
--log-driver   Logging driver for service
--log-opt   Logging driver options
--mode replicated Service mode (replicated or global)
--mount   Attach a filesystem mount to the service
--name   Service name
--network   Network attachments
--no-healthcheck false Disable any container-specified HEALTHCHECK
--publish, -p   Publish a port as a node port
--replicas   Number of tasks
--reserve-cpu 0.000 Reserve CPUs
--reserve-memory 0 B Reserve Memory
--restart-condition   Restart when condition is met (none, on-failure, or any)
--restart-delay   Delay between restart attempts (ns|us|ms|s|m|h)
--restart-max-attempts   Maximum number of restarts before giving up
--restart-window   Window used to evaluate the restart policy (ns|us|ms|s|m|h)
--secret   Specify secrets to expose to the service
--stop-grace-period   Time to wait before force killing a container (ns|us|ms|s|m|h)
--tty, -t false Allocate a pseudo-TTY
--update-delay 0 Delay between updates (ns|us|ms|s|m|h) (default 0s)
--update-failure-action pause Action on update failure (pause|continue)
--update-max-failure-ratio 0 Failure rate to tolerate during an update
--update-monitor 0 Duration after each task update to monitor for failure (ns|us|ms|s|m|h) (default 0s)
--update-parallelism 1 Maximum number of tasks updated simultaneously (0 to update all at once)
--user, -u   Username or UID (format: <name|uid>[:<group|gid>])
--with-registry-auth false Send registry authentication details to swarm agents
--workdir, -w   Working directory inside the container

Parent command

Command Description
docker service Manage services
Command Description
docker service create Create a new service
docker service inspect Display detailed information on one or more services
docker service logs Fetch the logs of a service
docker service ls List services
docker service ps List the tasks of one or more services
docker service rm Remove one or more services
docker service scale Scale one or multiple replicated services
docker service update Update a service


Create a service

$ docker service create --name redis redis:3.0.6


$ docker service create --mode global --name redis2 redis:3.0.6


$ docker service ls

ID            NAME    MODE        REPLICAS  IMAGE
dmu1ept4cxcf  redis   replicated  1/1       redis:3.0.6
a8q9dasaafud  redis2  global      1/1       redis:3.0.6

Create a service with 5 replica tasks (–replicas)

Use the --replicas flag to set the number of replica tasks for a replicated service. The following command creates a redis service with 5 replica tasks:

$ docker service create --name redis --replicas=5 redis:3.0.6


The above command sets the desired number of tasks for the service. Even though the command returns immediately, actual scaling of the service may take some time. The REPLICAS column shows both the actual and desired number of replica tasks for the service.

In the following example the desired state is 5 replicas, but the current number of RUNNING tasks is 3:

$ docker service ls

ID            NAME   MODE        REPLICAS  IMAGE
4cdgfyky7ozw  redis  replicated  3/5       redis:3.0.7

Once all the tasks are created and RUNNING, the actual number of tasks is equal to the desired number:

$ docker service ls

ID            NAME   MODE        REPLICAS  IMAGE
4cdgfyky7ozw  redis  replicated  5/5       redis:3.0.7

Create a service with secrets

Use the --secret flag to give a container access to a secret.

Create a service specifying a secret:

$ docker service create --name redis --secret secret.json redis:3.0.6


Create a service specifying the secret, target, user/group ID and mode:

$ docker service create --name redis \
    --secret source=ssh-key,target=ssh \
    --secret src=app-key,target=app,uid=1000,gid=1001,mode=0400 \


Secrets are located in /run/secrets in the container. If no target is specified, the name of the secret will be used as the in memory file in the container. If a target is specified, that will be the filename. In the example above, two files will be created: /run/secrets/ssh and /run/secrets/app for each of the secret targets specified.

Create a service with a rolling update policy

$ docker service create \
  --replicas 10 \
  --name redis \
  --update-delay 10s \
  --update-parallelism 2 \

When you run a service update, the scheduler updates a maximum of 2 tasks at a time, with 10s between updates. For more information, refer to the rolling updates tutorial.

Set environment variables (-e, –env)

This sets environmental variables for all tasks in a service. For example:

$ docker service create \
  --name redis_2 \
  --replicas 5 \
  --env MYVAR=foo \

Create a docker service with specific hostname (–hostname)

This option sets the docker service containers hostname to a specific string. For example: bash $ docker service create \ --name redis \ --hostname myredis \ redis:3.0.6 ### Set metadata on a service (-l, –label)

A label is a key=value pair that applies metadata to a service. To label a service with two labels:

$ docker service create \
  --name redis_2 \
  --label bar=baz \

For more information about labels, refer to apply custom metadata.

Add bind-mounts or volumes

Docker supports two different kinds of mounts, which allow containers to read to or write from files or directories on other containers or the host operating system. These types are data volumes (often referred to simply as volumes) and bind-mounts.

Additionally, Docker also supports tmpfs mounts.

A bind-mount makes a file or directory on the host available to the container it is mounted within. A bind-mount may be either read-only or read-write. For example, a container might share its host’s DNS information by means of a bind-mount of the host’s /etc/resolv.conf or a container might write logs to its host’s /var/log/myContainerLogs directory. If you use bind-mounts and your host and containers have different notions of permissions, access controls, or other such details, you will run into portability issues.

A named volume is a mechanism for decoupling persistent data needed by your container from the image used to create the container and from the host machine. Named volumes are created and managed by Docker, and a named volume persists even when no container is currently using it. Data in named volumes can be shared between a container and the host machine, as well as between multiple containers. Docker uses a volume driver to create, manage, and mount volumes. You can back up or restore volumes using Docker commands.

A tmpfs mounts a tmpfs inside a container for volatile data.

Consider a situation where your image starts a lightweight web server. You could use that image as a base image, copy in your website’s HTML files, and package that into another image. Each time your website changed, you’d need to update the new image and redeploy all of the containers serving your website. A better solution is to store the website in a named volume which is attached to each of your web server containers when they start. To update the website, you just update the named volume.

For more information about named volumes, see Data Volumes.

The following table describes options which apply to both bind-mounts and named volumes in a service:

Option Required Description
type   The type of mount, can be one of volume, bind, or tmpfs. Defaults to volume if no type is specified. volume mounts a managed volume into the container. bind bind-mounts a directory or file from the host into the container. tmpfs: mount a tmpfs in the container.
src or sourcevvvv for type=bind only type=volume: src is an optional way to specify the name of the volume (for example, src=my-volume). If the named volume does not exist, it is automatically created. If no src is specified, the volume is assigned a random name which is guaranteed to be unique on the host, but may not be unique cluster-wide. A randomly-named volume has the same lifecycle as its container and is destroyed when the container is destroyed (which is upon service update, or when scaling or re-balancing the service). type=bind: src is required, and specifies an absolute path to the file or directory to bind-mount (for example, src=/path/on/host/). An error is produced if the file or directory does not exist. type=tmpfs: src is not supported.
dst or destination or target yes Mount path inside the container, for example /some/path/in/container/. If the path does not exist in the container’s filesystem, the Engine creates a directory at the specified location before mounting the volume or bind-mount.
*readonly or ro   The Engine mounts binds and volumes read-write unless readonly option is given when mounting the bind or volume. When true or 1 or no value the bind or volume is mounted read-only. When false or 0 the bind or volume is mounted read-write.

Bind Propagation

Bind propagation refers to whether or not mounts created within a given bind-mount or named volume can be propagated to replicas of that mount. Consider a mount point /mnt, which is also mounted on /tmp. The propation settings control whether a mount on /tmp/a would also be available on /mnt/a. Each propagation setting has a recursive counterpoint. In the case of recursion, consider that /tmp/a is also mounted as /foo. The propagation settings control whether /mnt/a and/or /tmp/a would exist.

The bind-propagation option defaults to rprivate for both bind-mounts and volume mounts, and is only configurable for bind-mounts. In other words, named volumes do not support bind propagation.

  • shared: Sub-mounts of the original mount are exposed to replica mounts, and sub-mounts of replica mounts are also propagated to the original mount.
  • slave: similar to a shared mount, but only in one direction. If the original mount exposes a sub-mount, the replica mount can see it. However, if the replica mount exposes a sub-mount, the original mount cannot see it.
  • private: The mount is private. Sub-mounts within it are not exposed to replica mounts, and sub-mounts of replica mounts are not exposed to the original mount.
  • rshared: The same as shared, but the propagation also extends to and from mount points nested within any of the original or replica mount points.
  • rslave: The same as slave, but the propagation also extends to and from mount points nested within any of the original or replica mount points.
  • rprivate: The default. The same as private, meaning that no mount points anywhere within the original or replica mount points propagate in either direction.

For more information about bind propagation, see the Linux kernel documentation for shared subtree.

Options for Named Volumes

The following options can only be used for named volumes (type=volume);

Option Description
volume-driver Name of the volume-driver plugin to use for the volume. Defaults to "local", to use the local volume driver to create the volume if the volume does not exist.
volume-label One or more custom metadata (“labels”) to apply to the volume upon creation. For example, volume-label=mylabel=hello-world,my-other-label=hello-mars. For more information about labels, refer to apply custom metadata.
volume-nocopy By default, if you attach an empty volume to a container, and files or directories already existed at the mount-path in the container (dst), the Engine copies those files and directories into the volume, allowing the host to access them. Set volume-nocopy to disables copying files from the container’s filesystem to the volume and mount the empty volume. A value is optional. true or 1 is the default if you do not provide a value and disables copying. false or 0 enables copying.
volume-opt Options specific to a given volume driver, which will be passed to the driver when creating the volume. Options are provided as a comma-separated list of key/value pairs, for example, volume-opt=some-option=some-value,some-other-option=some-other-value. For available options for a given driver, refer to that driver’s documentation.

Options for tmpfs

The following options can only be used for tmpfs mounts (type=tmpfs);

Option Description
tmpfs-size Size of the tmpfs mount in bytes. Unlimited by default in Linux.
tmpfs-mode File mode of the tmpfs in octal. (e.g. "700" or "0700".) Defaults to "1777" in Linux.

Differences between “–mount” and “–volume”

The --mount flag supports most options that are supported by the -v or --volume flag for docker run, with some important exceptions:

  • The --mount flag allows you to specify a volume driver and volume driver options per volume, without creating the volumes in advance. In contrast, docker run allows you to specify a single volume driver which is shared by all volumes, using the --volume-driver flag.

  • The --mount flag allows you to specify custom metadata (“labels”) for a volume, before the volume is created.

  • When you use --mount with type=bind, the host-path must refer to an existing path on the host. The path will not be created for you and the service will fail with an error if the path does not exist.

  • The --mount flag does not allow you to relabel a volume with Z or z flags, which are used for selinux labeling.

Create a service using a named volume

The following example creates a service that uses a named volume:

$ docker service create \
  --name my-service \
  --replicas 3 \
  --mount type=volume,source=my-volume,destination=/path/in/container,volume-label="color=red",volume-label="shape=round" \

For each replica of the service, the engine requests a volume named “my-volume” from the default (“local”) volume driver where the task is deployed. If the volume does not exist, the engine creates a new volume and applies the “color” and “shape” labels.

When the task is started, the volume is mounted on /path/in/container/ inside the container.

Be aware that the default (“local”) volume is a locally scoped volume driver. This means that depending on where a task is deployed, either that task gets a new volume named “my-volume”, or shares the same “my-volume” with other tasks of the same service. Multiple containers writing to a single shared volume can cause data corruption if the software running inside the container is not designed to handle concurrent processes writing to the same location. Also take into account that containers can be re-scheduled by the Swarm orchestrator and be deployed on a different node.

Create a service that uses an anonymous volume

The following command creates a service with three replicas with an anonymous volume on /path/in/container:

$ docker service create \
  --name my-service \
  --replicas 3 \
  --mount type=volume,destination=/path/in/container \

In this example, no name (source) is specified for the volume, so a new volume is created for each task. This guarantees that each task gets its own volume, and volumes are not shared between tasks. Anonymous volumes are removed after the task using them is complete.

Create a service that uses a bind-mounted host directory

The following example bind-mounts a host directory at /path/in/container in the containers backing the service:

$ docker service create \
  --name my-service \
  --mount type=bind,source=/path/on/host,destination=/path/in/container \

Set service mode (–mode)

The service mode determines whether this is a replicated service or a global service. A replicated service runs as many tasks as specified, while a global service runs on each active node in the swarm.

The following command creates a global service:

$ docker service create \
 --name redis_2 \
 --mode global \

Specify service constraints (–constraint)

You can limit the set of nodes where a task can be scheduled by defining constraint expressions. Multiple constraints find nodes that satisfy every expression (AND match). Constraints can match node or Docker Engine labels as follows:

node attribute matches example node ID == 2ivku8v2gvtg4
node.hostname node hostname node.hostname != node-2
node.role node role: manager node.role == manager
node.labels user defined node labels == high
engine.labels Docker Engine’s labels engine.labels.operatingsystem == ubuntu 14.04

engine.labels apply to Docker Engine labels like operating system, drivers, etc. Swarm administrators add node.labels for operational purposes by using the docker node update command.

For example, the following limits tasks for the redis service to nodes where the node type label equals queue:

$ docker service create \
  --name redis_2 \
  --constraint 'node.labels.type == queue' \

Attach a service to an existing network (–network)

You can use overlay networks to connect one or more services within the swarm.

First, create an overlay network on a manager node the docker network create command:

$ docker network create \
  --driver overlay \


After you create an overlay network in swarm mode, all manager nodes have access to the network.

When you create a service and pass the –network flag to attach the service to the overlay network:

$ docker service create \
  --replicas 3 \
  --network my-network \
  --name my-web \


The swarm extends my-network to each node running the service.

Containers on the same network can access each other using service discovery.

Publish service ports externally to the swarm (-p, –publish)

You can publish service ports to make them available externally to the swarm using the --publish flag:

$ docker service create \
  --publish <TARGET-PORT>:<SERVICE-PORT> \

For example:

$ docker service create \
  --name my_web \
  --replicas 3 \
  --publish 8080:80 \

When you publish a service port, the swarm routing mesh makes the service accessible at the target port on every node regardless if there is a task for the service running on the node. For more information refer to Use swarm mode routing mesh.

Publish a port for TCP only or UDP only

By default, when you publish a port, it is a TCP port. You can specifically publish a UDP port instead of or in addition to a TCP port. When you publish both TCP and UDP ports, Docker 1.12.2 and earlier require you to add the suffix /tcp for TCP ports. Otherwise it is optional.

TCP only

The following two commands are equivalent.

$ docker service create --name dns-cache -p 53:53 dns-cache

$ docker service create --name dns-cache -p 53:53/tcp dns-cache


$ docker service create --name dns-cache -p 53:53/tcp -p 53:53/udp dns-cache

UDP only

$ docker service create --name dns-cache -p 53:53/udp dns-cache

Create services using templates

You can use templates for some flags of service create, using the syntax provided by the Go’s text/template package.

The supported flags are the following :

  • --hostname
  • --mount
  • --env

Valid placeholders for the Go template are listed below:

Placeholder Description
.Service.ID Service ID
.Service.Name Service name
.Service.Labels Service labels
.Node.ID Node ID
.Task.ID Task ID
.Task.Name Task name
.Task.Slot Task slot

Template example

In this example, we are going to set the template of the created containers based on the service’s name and the node’s ID where it sits.

$ docker service create \
  --name hosttempl \
  --hostname="{{.Node.ID}}-{{.Service.Name}}" \
  busybox top


$ docker service ps va8ew30grofhjoychbr6iot8c

ID            NAME         IMAGE                                                                                   NODE          DESIRED STATE  CURRENT STATE               ERROR  PORTS
wo41w8hg8qan  hosttempl.1  busybox:latest@sha256:29f5d56d12684887bdfa50dcd29fc31eea4aaf4ad3bec43daf19026a7ce69912  2e7a8a9c4da2  Running        Running about a minute ago

$ docker inspect \
  --format="{{.Config.Hostname}}" \

chat icon Feedback? Suggestions? Can't find something in the docs?
Edit this page Request docs changes Get support
Rate this page: